Optimality of Message-Passing Architectures for Sparse Graphs

05/17/2023
by   Aseem Baranwal, et al.
0

We study the node classification problem on feature-decorated graphs in the sparse setting, i.e., when the expected degree of a node is O(1) in the number of nodes. Such graphs are typically known to be locally tree-like. We introduce a notion of Bayes optimality for node classification tasks, called asymptotic local Bayes optimality, and compute the optimal classifier according to this criterion for a fairly general statistical data model with arbitrary distributions of the node features and edge connectivity. The optimal classifier is implementable using a message-passing graph neural network architecture. We then compute the generalization error of this classifier and compare its performance against existing learning methods theoretically on a well-studied statistical model with naturally identifiable signal-to-noise ratios (SNRs) in the data. We find that the optimal message-passing architecture interpolates between a standard MLP in the regime of low graph signal and a typical convolution in the regime of high graph signal. Furthermore, we prove a corresponding non-asymptotic result.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset