Optimization of a Moving Sensor Trajectory for Observing a Point Scalar Source in Turbulent Flow

We propose a strategy for optimizing a sensor trajectory in order to estimate the time dependence of a localized scalar source in turbulent channel flow. The approach leverages the view of the adjoint scalar field as the sensitivity of measurement to a possible source. A cost functional is constructed so that the optimal sensor trajectory maintains a high sensitivity and low temporal variation in the measured signal, for a given source location. This naturally leads to the adjoint-of-adjoint equation based on which the sensor trajectory is iteratively optimized. It is shown that the estimation performance based on the measurement obtained by a sensor moving along the optimal trajectory is drastically improved from that achieved with a stationary sensor. It is also shown that the ratio of the fluctuation and the mean of the sensitivity for a given sensor trajectory can be used as a diagnostic tool to evaluate the resultant performance. Based on this finding, we propose a new cost functional which only includes the ratio without any adjustable parameters, and demonstrate its effectiveness in predicting the time dependence of scalar release from the source.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset