Optimization of Speed and Network Deployment for Reliable V2I Communication in the Presence of Handoffs and Interference
Vehicle-to-infrastructure (V2I) communication is becoming indispensable for successful roll-out of connected and autonomous vehicles (CAVs). While increasing the CAVs' speed improves the average CAV traffic flow, it increases communication handoffs (HOs) thus reducing wireless data rates. Furthermore, unplanned density of active base-stations (BSs) may result in severe interference which negatively impacts CAV data rate. In this letter, we first characterize macroscopic traffic flow by considering log-normal distribution of the spacing between CAVs. We then derive novel closed-form expressions for the exact HO-aware rate outage probability and ergodic capacity in a large-scale network with interference. Then, we formulate a traffic flow maximization problem to optimize the speed of CAVs and deployment density of BSs with HO-aware rate constraints and collision avoidance constraints. Our numerical results validate the closed-form analytical expressions, extract useful insights about the optimal speed and BS density, and highlight the key trade-offs between the HO-aware data rates and CAV traffic flow.
READ FULL TEXT