Optimizing for Generalization in Machine Learning with Cross-Validation Gradients

05/18/2018
by   Shane Barratt, et al.
0

Cross-validation is the workhorse of modern applied statistics and machine learning, as it provides a principled framework for selecting the model that maximizes generalization performance. In this paper, we show that the cross-validation risk is differentiable with respect to the hyperparameters and training data for many common machine learning algorithms, including logistic regression, elastic-net regression, and support vector machines. Leveraging this property of differentiability, we propose a cross-validation gradient method (CVGM) for hyperparameter optimization. Our method enables efficient optimization in high-dimensional hyperparameter spaces of the cross-validation risk, the best surrogate of the true generalization ability of our learning algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset