Optional Pólya trees: posterior rates and uncertainty quantification

10/11/2021
by   Ismaël Castillo, et al.
0

We consider statistical inference in the density estimation model using a tree-based Bayesian approach, with Optional Pólya trees as prior distribution. We derive near-optimal convergence rates for corresponding posterior distributions with respect to the supremum norm. For broad classes of Hölder-smooth densities, we show that the method automatically adapts to the unknown Hölder regularity parameter. We consider the question of uncertainty quantification by providing mathematical guarantees for credible sets from the obtained posterior distributions, leading to near-optimal uncertainty quantification for the density function, as well as related functionals such as the cumulative distribution function. The results are illustrated through a brief simulation study.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset