ORD: Object Relationship Discovery for Visual Dialogue Generation

06/15/2020
by   Ziwei Wang, et al.
0

With the rapid advancement of image captioning and visual question answering at single-round level, the question of how to generate multi-round dialogue about visual content has not yet been well explored.Existing visual dialogue methods encode the image into a fixed feature vector directly, concatenated with the question and history embeddings to predict the response.Some recent methods tackle the co-reference resolution problem using co-attention mechanism to cross-refer relevant elements from the image, history, and the target question.However, it remains challenging to reason visual relationships, since the fine-grained object-level information is omitted before co-attentive reasoning. In this paper, we propose an object relationship discovery (ORD) framework to preserve the object interactions for visual dialogue generation. Specifically, a hierarchical graph convolutional network (HierGCN) is proposed to retain the object nodes and neighbour relationships locally, and then refines the object-object connections globally to obtain the final graph embeddings. A graph attention is further incorporated to dynamically attend to this graph-structured representation at the response reasoning stage. Extensive experiments have proved that the proposed method can significantly improve the quality of dialogue by utilising the contextual information of visual relationships. The model achieves superior performance over the state-of-the-art methods on the Visual Dialog dataset, increasing MRR from 0.6222 to 0.6447, and recall@1 from 48.48

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset