OTFS: A New Generation of Modulation Addressing the Challenges of 5G
In this paper, we introduce a new 2D modulation scheme referred to as OTFS (Orthogonal Time Frequency & Space) that multiplexes information QAM symbols over new class of carrier waveforms that correspond to localized pulses in a signal representation called the delay-Doppler representation. OTFS constitutes a far reaching generalization of conventional time and frequency modulations such as TDM and FDM and, from a broader perspective, it establishes a conceptual link between Radar and communication. The OTFS waveforms couple with the wireless channel in a way that directly captures the underlying physics, yielding a high-resolution delay-Doppler Radar image of the constituent reflectors. As a result, the time-frequency selective channel is converted into an invariant, separable and orthogonal interaction, where all received QAM symbols experience the same localized impairment and all the delay-Doppler diversity branches are coherently combined. The high resolution delay-Doppler separation of the reflectors enables OTFS to approach channel capacity with optimal performance-complexity tradeoff through linear scaling of spectral efficiency with the MIMO order and robustness to Doppler and multipath channel conditions. OTFS is an enabler for realizing the full promise of MUMIMO gains even in challenging 5G deployment settings where adaptation is unrealistic.
READ FULL TEXT