Parabolic interface reconstruction for 2D volume of fluid methods

11/18/2021
by   Ronald A. Remmerswaal, et al.
0

For capillary driven flow the interface curvature is essential in the modelling of surface tension via the imposition of the Young-Laplace jump condition. We show that traditional geometric volume of fluid (VoF) methods, that are based on a piecewise linear approximation of the interface, do not lead to an interface curvature which is convergent under mesh refinement in time-dependent problems. Instead, we propose to use a piecewise parabolic approximation of the interface, resulting in a class of piecewise parabolic interface calculation (PPIC) methods. In particular, we introduce the parabolic LVIRA and MoF methods, PLVIRA and PMoF, respectively. We show that a Lagrangian remapping method is sufficiently accurate for the advection of such a parabolic interface. It is numerically demonstrated that the newly proposed PPIC methods result in an increase of reconstruction accuracy by one order, convergence of the interface curvature in time-dependent advection problems and Weber number independent convergence of a droplet translation problem, where the advection method is coupled to a two-phase Navier–Stokes solver.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset