Parameter estimation for cellular automata

01/30/2023
by   Alexey Kazarnikov, et al.
0

Self organizing complex systems can be modeled using cellular automaton models. However, the parametrization of these models is crucial and significantly determines the resulting structural pattern. In this research, we introduce and successfully apply a sound statistical method to estimate these parameters. The method is based on constructing Gaussian likelihoods using characteristics of the structures such as the mean particle size. We show that our approach is robust with respect to the method parameters, domain size of patterns, or CA iterations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset