Parameterized Fine-Grained Reductions

02/14/2019
by   Elli Anastasiadi, et al.
0

During recent years the field of fine-grained complexity has bloomed to produce a plethora of results, with both applied and theoretical impact on the computer science community. The cornerstone of the framework is the notion of fine-grained reductions, which correlate the exact complexities of problems such that improvements in their running times or hardness results are carried over. We provide a parameterized viewpoint of these reductions (PFGR) in order to further analyze the structure of improvable problems and set the foundations of a unified methodology for extending algorithmic results. In this context, we define a class of problems (FPI) that admit fixed-parameter improvements on their running time. As an application of this framework we present a truly sub-quadratic fixed-parameter algorithm for the orthogonal vectors problem. Finally, we provide a circuit characterization for FPI to further solidify the notion of improvement.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro