Parity games and universal graphs
This paper is a contribution to the study of parity games and the recent constructions of three quasipolynomial time algorithms for solving them. We revisit a result of Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, and Parys witnessing a quasipolynomial barrier for all three quasipolynomial time algorithms. The argument is that all three algorithms can be understood as constructing a so-called separating automaton, and to give a quasipolynomial lower bond on the size of separating automata. We give an alternative proof of this result. The key innovations of this paper are the notion of universal graphs and the idea of saturation.
READ FULL TEXT