Particle-based simulations of reaction-diffusion processes with Aboria
Mathematical models of transport and reactions in biological systems have been traditionally written in terms of partial differential equations (PDEs) that describe the time evolution of population-level variables. In recent years, the use of stochastic particle-based models, which keep track of the evolution of each organism in the system, has become widespread. These models provide a lot more detail than the population-based PDE models, for example by explicitly modelling particle-particle interactions, but bring with them many computational challenges. In this paper we overview Aboria, a powerful and flexible C++ library for the implementation of numerical methods for particle-based models. We demonstrate the use of Aboria with a commonly used model in mathematical biology, namely cell chemotaxis. Cells interact with each other and diffuse, biased by extracellular chemicals, that can be altered by the cells themselves. We use a hybrid approach where particle-based models of cells are coupled with a PDE for the concentration of the extracellular chemical.
READ FULL TEXT