Paxos Consensus, Deconstructed and Abstracted (Extended Version)

02/16/2018
by   Álvaro García-Pérez, et al.
0

Lamport's Paxos algorithm is a classic consensus protocol for state machine replication in environments that admit crash failures. Many versions of Paxos exploit the protocol's intrinsic properties for the sake of gaining better run-time performance, thus widening the gap between the original description of the algorithm, which was proven correct, and its real-world implementations. In this work, we address the challenge of specifying and verifying complex Paxos-based systems by (a) devising composable specifications for implementations of Paxos's single-decree version, and (b) engineering disciplines to reason about protocol-aware, semantics-preserving optimisations to single-decree Paxos. In a nutshell, our approach elaborates on the deconstruction of single-decree Paxos by Boichat et al. We provide novel non-deterministic specifications for each module in the deconstruction and prove that the implementations refine the corresponding specifications, such that the proofs of the modules that remain unchanged can be reused across different implementations. We further reuse this result and show how to obtain a verified implementation of Multi-Paxos from a verified implementation of single-decree Paxos, by a series of novel protocol-aware transformations of the network semantics, which we prove to be behaviour-preserving.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset