PCA in Data-Dependent Noise (Correlated-PCA): Nearly Optimal Finite Sample Guarantees

02/10/2017
by   Namrata Vaswani, et al.
0

We study Principal Component Analysis (PCA) in a setting where a part of the corrupting noise is data-dependent and, as a result, the noise and the true data are correlated. Under a bounded-ness assumption on the true data and the noise, and a simple assumption on data-noise correlation, we obtain a nearly optimal sample complexity bound for the most commonly used PCA solution, singular value decomposition (SVD). This bound is a significant improvement over the bound obtained by Vaswani and Guo in recent work (NIPS 2016) where this "correlated-PCA" problem was first studied; and it holds under a significantly weaker data-noise correlation assumption than the one used for this earlier result.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro