Permutation NMF
Nonnegative Matrix Factorization(NMF) is a common used technique in machine learning to extract features out of data such as text documents and images thanks to its natural clustering properties. In particular, it is popular in image processing since it can decompose several pictures and recognize common parts if they're located in the same position over the photos. This paper's aim is to present a way to add the translation invariance to the classical NMF, that is, the algorithms presented are able to detect common features, even when they're shifted, in different original images.
READ FULL TEXT