Persistent Homology of Geospatial Data: A Case Study with Voting
A crucial step in the analysis of persistent homology is transformation of data into a simplicial complex. Modern packages for persistent homology often construct Vietoris--Rips or other distance-based simplicial complexes on point clouds because they are relatively easy to compute. We investigate alternative methods of constructing these complexes and the effects of making associated choices during simplicial-complex construction on the output of persistent-homology algorithms. We present two new methods for constructing simplicial complexes from two-dimensional geospatial data (such as maps). We apply these methods to a California precinct-level voting data set, demonstrating that our new constructions can capture geometric characteristics that are missed by distance-based constructions. Our new constructions can thus yield more interpretable persistence modules and barcodes for geospatial data. In particular, they are able to distinguish short-persistence features that occur only for a narrow range of distance scales (e.g., voting behaviors in densely populated cities) from short-persistence noise by incorporating information about other spatial relationships between precincts.
READ FULL TEXT