Personalized Fuzzy Text Search Using Interest Prediction and Word Vectorization
In this paper we study the personalized text search problem. The keyword based search method in conventional algorithms has a low efficiency in understanding users' intention since the semantic meaning, user profile, user interests are not always considered. Firstly, we propose a novel text search algorithm using a inverse filtering mechanism that is very efficient for label based item search. Secondly, we adopt the Bayesian network to implement the user interest prediction for an improved personalized search. According to user input, it searches the related items using keyword information, predicted user interest. Thirdly, the word vectorization is used to discover potential targets according to the semantic meaning. Experimental results show that the proposed search engine has an improved efficiency and accuracy and it can operate on embedded devices with very limited computational resources.
READ FULL TEXT