Phase-Shifting Coder: Predicting Accurate Orientation in Oriented Object Detection
With the vigorous development of computer vision, oriented object detection has gradually been featured. In this paper, a novel differentiable angle coder named phase-shifting coder (PSC) is proposed to accurately predict the orientation of objects, along with a dual-frequency version PSCD. By mapping rotational periodicity of different cycles into phase of different frequencies, we provide a unified framework for various periodic fuzzy problems in oriented object detection. Upon such framework, common problems in oriented object detection such as boundary discontinuity and square-like problems are elegantly solved in a unified form. Visual analysis and experiments on three datasets prove the effectiveness and the potentiality of our approach. When facing scenarios requiring high-quality bounding boxes, the proposed methods are expected to give a competitive performance. The codes are publicly available at https://github.com/open-mmlab/mmrotate.
READ FULL TEXT