Physics-constrained 3D Convolutional Neural Networks for Electrodynamics

01/31/2023
by   Alexander Scheinker, et al.
0

We present a physics-constrained neural network (PCNN) approach to solving Maxwell's equations for the electromagnetic fields of intense relativistic charged particle beams. We create a 3D convolutional PCNN to map time-varying current and charge densities J(r,t) and p(r,t) to vector and scalar potentials A(r,t) and V(r,t) from which we generate electromagnetic fields according to Maxwell's equations: B=curl(A), E=-div(V)-dA/dt. Our PCNNs satisfy hard constraints, such as div(B)=0, by construction. Soft constraints push A and V towards satisfying the Lorenz gauge.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro