PITS: Variational Pitch Inference without Fundamental Frequency for End-to-End Pitch-controllable TTS

02/24/2023
by   Junhyeok Lee, et al.
0

Previous pitch-controllable text-to-speech (TTS) models rely on directly modeling fundamental frequency, leading to low variance in synthesized speech. To address this issue, we propose PITS, an end-to-end pitch-controllable TTS model that utilizes variational inference to model pitch. Based on VITS, PITS incorporates the Yingram encoder, the Yingram decoder, and adversarial training of pitch-shifted synthesis to achieve pitch-controllability. Experiments demonstrate that PITS generates high-quality speech that is indistinguishable from ground truth speech and has high pitch-controllability without quality degradation. Code and audio samples will be available at https://github.com/anonymous-pits/pits.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset