Poisoning and Backdooring Contrastive Learning
Contrastive learning methods like CLIP train on noisy and uncurated training datasets. This is cheaper than labeling datasets manually, and even improves out-of-distribution robustness. We show that this practice makes backdoor and poisoning attacks a significant threat. By poisoning just 0.005 (e.g., just 150 images of the 3 million-example Conceptual Captions dataset), we can cause the model to misclassify test images by overlaying a small patch. Targeted poisoning attacks, whereby the model misclassifies a particular test input with an adversarially-desired label, are even easier requiring control of less than 0.0001 Our attacks call into question whether training on noisy and uncurated Internet scrapes is desirable.
READ FULL TEXT