Post-Processed Posteriors for Sparse Covariances and Its Application to Global Minimum Variance Portfolio
We consider Bayesian inference of sparse covariance matrices and propose a post-processed posterior. This method consists of two steps. In the first step, posterior samples are obtained from the conjugate inverse-Wishart posterior without considering the sparse structural assumption. The posterior samples are transformed in the second step to satisfy the sparse structural assumption through the hard-thresholding function. This non-traditional Bayesian procedure is justified by showing that the post-processed posterior attains the optimal minimax rates. We also investigate the application of the post-processed posterior to the estimation of the global minimum variance portfolio. We show that the post-processed posterior for the global minimum variance portfolio also attains the optimal minimax rate under the sparse covariance assumption. The advantages of the post-processed posterior for the global minimum variance portfolio are demonstrated by a simulation study and a real data analysis with S P 400 data.
READ FULL TEXT