Post Selection Inference with Kernels

10/12/2016
by   Makoto Yamada, et al.
0

We propose a novel kernel based post selection inference (PSI) algorithm, which can not only handle non-linearity in data but also structured output such as multi-dimensional and multi-label outputs. Specifically, we develop a PSI algorithm for independence measures, and propose the Hilbert-Schmidt Independence Criterion (HSIC) based PSI algorithm (hsicInf). The novelty of the proposed algorithm is that it can handle non-linearity and/or structured data through kernels. Namely, the proposed algorithm can be used for wider range of applications including nonlinear multi-class classification and multi-variate regressions, while existing PSI algorithms cannot handle them. Through synthetic experiments, we show that the proposed approach can find a set of statistically significant features for both regression and classification problems. Moreover, we apply the hsicInf algorithm to a real-world data, and show that hsicInf can successfully identify important features.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro