Pre-averaging fractional processes contaminated by noise, with an application to turbulence

12/01/2022
by   David chen, et al.
0

In this article, we consider the problem of estimating fractional processes based on noisy high-frequency data. Generalizing the idea of pre-averaging to a fractional setting, we exhibit a sequence of consistent estimators for the unknown parameters of interest by proving a law of large numbers for associated variation functionals. In contrast to the semimartingale setting, the optimal window size for pre-averaging depends on the unknown roughness parameter of the underlying process. We evaluate the performance of our estimators in a simulation study and use them to empirically verify Kolmogorov's 2/3-law in turbulence data contaminated by instrument noise.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro