Pre-train and Plug-in: Flexible Conditional Text Generation with Variational Auto-Encoders

11/10/2019
by   Yu Duan, et al.
0

Current neural Natural Language Generation (NLG) models cannot handle emerging conditions due to their joint end-to-end learning fashion. When the need for generating text under a new condition emerges, these techniques require not only sufficiently supplementary labeled data but also a full re-training of the existing model. In this paper, we present a new framework named Hierarchical Neural Auto-Encoder (HAE) toward flexible conditional text generation. HAE decouples the text generation module from the condition representation module to allow "one-to-many" conditional generation. When a fresh condition emerges, only a lightweight network needs to be trained and works as a plug-in for HAE, which is efficient and desirable for real-world applications. Extensive experiments demonstrate the superiority of HAE against the existing alternatives with much less training time and fewer model parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset