Prediction against limited adversary

10/31/2020
by   Erhan Bayraktar, et al.
0

We study the problem of prediction with expert advice with adversarial corruption where the adversary can at most corrupt one expert. Using tools from viscosity theory, we characterize the long-time behavior of the value function of the game between the forecaster and the adversary. We provide lower and upper bounds for the growth rate of regret without relying on a comparison result. We show that depending on the description of regret, the limiting behavior of the game can significantly differ.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset