Preserving physically important variables in optimal event selections: A case study in Higgs physics

07/03/2019
by   Philipp Windischhofer, et al.
0

Analyses of collider data, often assisted by modern Machine Learning methods, condense a number of observables into a few powerful discriminants for the separation of the targeted signal process from the contributing backgrounds. These discriminants are highly correlated with important physical observables; using them in the event selection thus leads to the distortion of physically relevant distributions. We present an alternative event selection strategy, based on adversarially trained classifiers, that exploits the discriminating power contained in many event variables, but preserves the distributions of selected observables. This method is implemented and evaluated for the case of a Standard Model Higgs boson decaying into a pair of bottom quarks. Compared to a cut-based approach, it leads to a significant improvement in analysis sensitivity and retains the shapes of the relevant distributions to a greater extent.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset