Preventing Information Leakage with Neural Architecture Search

12/18/2019
by   Shuang Zhang, et al.
20

Powered by machine learning services in the cloud, numerous learning-driven mobile applications are gaining popularity in the market. As deep learning tasks are mostly computation-intensive, it has become a trend to process raw data on devices and send the neural network features to the cloud, whereas the part of the neural network residing in the cloud completes the task to return final results. However, there is always the potential for unexpected leakage with the release of features, with which an adversary could infer a significant amount of information about the original data. To address this problem, we propose a privacy-preserving deep learning framework on top of the mobile cloud infrastructure: the trained deep neural network is tailored to prevent information leakage through features while maintaining highly accurate results. In essence, we learn the strategy to prevent leakage by modifying the trained deep neural network against a generic opponent, who infers unintended information from released features and auxiliary data, while preserving the accuracy of the model as much as possible.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset