Principal motion components for gesture recognition using a single-example

10/17/2013
by   Hugo Jair Escalante, et al.
0

This paper introduces principal motion components (PMC), a new method for one-shot gesture recognition. In the considered scenario a single training-video is available for each gesture to be recognized, which limits the application of traditional techniques (e.g., HMMs). In PMC, a 2D map of motion energy is obtained per each pair of consecutive frames in a video. Motion maps associated to a video are processed to obtain a PCA model, which is used for recognition under a reconstruction-error approach. The main benefits of the proposed approach are its simplicity, easiness of implementation, competitive performance and efficiency. We report experimental results in one-shot gesture recognition using the ChaLearn Gesture Dataset; a benchmark comprising more than 50,000 gestures, recorded as both RGB and depth video with a Kinect camera. Results obtained with PMC are competitive with alternative methods proposed for the same data set.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset