Principal nested shape space analysis of molecular dynamics data

03/22/2019
by   Ian L. Dryden, et al.
0

Molecular dynamics simulations produce huge datasets of temporal sequences of molecules. It is of interest to summarize the shape evolution of the molecules in a succinct, low-dimensional representation. However, Euclidean techniques such as principal components analysis (PCA) can be problematic as the data may lie far from in a flat manifold. Principal nested spheres gives a fundamentally different decomposition of data from the usual Euclidean sub-space based PCA (Jung, Dryden and Marron, 2012, Biometrika). Sub-spaces of successively lower dimension are fitted to the data in a backwards manner, with the aim of retaining signal and dispensing with noise at each stage. We adapt the methodology to 3D sub-shape spaces and provide some practical fitting algorithms. The methodology is applied to cluster analysis of peptides, where different states of the molecules can be identified. Also, the temporal transitions between cluster states are explored.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset