Principled change point detection via representation learning
Change points are abrupt alterations in the distribution of sequential data. A change-point detection (CPD) model aims at quick detection of such changes. Classic approaches perform poorly for semi-structured sequential data because of the absence of adequate data representation learning. To deal with it, we introduce a principled differentiable loss function that considers the specificity of the CPD task. The theoretical results suggest that this function approximates well classic rigorous solutions. For such loss function, we propose an end-to-end method for the training of deep representation learning CPD models. Our experiments provide evidence that the proposed approach improves baseline results of change point detection for various data types, including real-world videos and image sequences, and improve representations for them.
READ FULL TEXT