Probabilistic Diagnostic Tests for Degradation Problems in Supervised Learning
Several studies point out different causes of performance degradation in supervised machine learning. Problems such as class imbalance, overlapping, small-disjuncts, noisy labels, and sparseness limit accuracy in classification algorithms. Even though a number of approaches either in the form of a methodology or an algorithm try to minimize performance degradation, they have been isolated efforts with limited scope. Most of these approaches focus on remediation of one among many problems, with experimental results coming from few datasets and classification algorithms, insufficient measures of prediction power, and lack of statistical validation for testing the real benefit of the proposed approach. This paper consists of two main parts: In the first part, a novel probabilistic diagnostic model based on identifying signs and symptoms of each problem is presented. Thereby, early and correct diagnosis of these problems is to be achieved in order to select not only the most convenient remediation treatment but also unbiased performance metrics. Secondly, the behavior and performance of several supervised algorithms are studied when training sets have such problems. Therefore, prediction of success for treatments can be estimated across classifiers.
READ FULL TEXT