ProbLP: A framework for low-precision probabilistic inference

02/27/2021
by   Nimish Shah, et al.
0

Bayesian reasoning is a powerful mechanism for probabilistic inference in smart edge-devices. During such inferences, a low-precision arithmetic representation can enable improved energy efficiency. However, its impact on inference accuracy is not yet understood. Furthermore, general-purpose hardware does not natively support low-precision representation. To address this, we propose ProbLP, a framework that automates the analysis and design of low-precision probabilistic inference hardware. It automatically chooses an appropriate energy-efficient representation based on worst-case error-bounds and hardware energy-models. It generates custom hardware for the resulting inference network exploiting parallelism, pipelining and low-precision operation. The framework is validated on several embedded-sensing benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset