Projective Proximal Gradient Descent for A Class of Nonconvex Nonsmooth Optimization Problems: Fast Convergence Without Kurdyka-Lojasiewicz (KL) Property
Nonconvex and nonsmooth optimization problems are important and challenging for statistics and machine learning. In this paper, we propose Projected Proximal Gradient Descent (PPGD) which solves a class of nonconvex and nonsmooth optimization problems, where the nonconvexity and nonsmoothness come from a nonsmooth regularization term which is nonconvex but piecewise convex. In contrast with existing convergence analysis of accelerated PGD methods for nonconvex and nonsmooth problems based on the Kurdyka-Łojasiewicz (KŁ) property, we provide a new theoretical analysis showing local fast convergence of PPGD. It is proved that PPGD achieves a fast convergence rate of (1/k^2) when the iteration number k ≥ k_0 for a finite k_0 on a class of nonconvex and nonsmooth problems under mild assumptions, which is locally Nesterov's optimal convergence rate of first-order methods on smooth and convex objective function with Lipschitz continuous gradient. Experimental results demonstrate the effectiveness of PPGD.
READ FULL TEXT