Properties and constructions of constrained codes for DNA-based data storage
We describe properties and constructions of constraint-based codes for DNA-based data storage which account for the maximum repetition length and AT/GC balance. We present algorithms for computing the number of sequences with maximum repetition length and AT/GC balance constraint. We describe routines for translating binary runlength limited and/or balanced strings into DNA strands, and compute the efficiency of such routines. We show that the implementation of AT/GC-balanced codes is straightforward accomplished with binary balanced codes. We present codes that account for both the maximum repetition length and AT/GC balance. We compute the redundancy difference between the binary and a fully fledged quaternary approach.
READ FULL TEXT