Proposal Learning for Semi-Supervised Object Detection

01/15/2020
by   Peng Tang, et al.
11

In this paper, we focus on semi-supervised object detection to boost accuracies of proposal-based object detectors (a.k.a. two-stage object detectors) by training on both labeled and unlabeled data. However, it is non-trivial to train object detectors on unlabeled data due to the unavailability of ground truth labels. To address this problem, we present a proposal learning approach to learn proposal features and predictions from both labeled and unlabeled data. The approach consists of a self-supervised proposal learning module and a consistency-based proposal learning module. In the self-supervised proposal learning module, we present a proposal location loss and a contrastive loss to learn context-aware and noise-robust proposal features respectively. In the consistency-based proposal learning module, we apply consistency losses to both bounding box classification and regression predictions of proposals to learn noise-robust proposal features and predictions. Experiments are conducted on the COCO dataset with all available labeled and unlabeled data. Results show that our approach consistently improves the accuracies of fully-supervised baselines. In particular, after combining with data distillation, our approach improves AP by about 2.0 0.9 baselines respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset