(Pseudo) Random Quantum States with Binary Phase

06/25/2019
by   Zvika Brakerski, et al.
0

We prove a quantum information-theoretic conjecture due to Ji, Liu and Song (CRYPTO 2018) which suggested that a uniform superposition with random binary phase is statistically indistinguishable from a Haar random state. That is, any polynomial number of copies of the aforementioned state is within exponentially small trace distance from the same number of copies of a Haar random state. As a consequence, we get a provable elementary construction of pseudorandom quantum states from post-quantum pseudorandom functions. Generating pseduorandom quantum states is desirable for physical applications as well as for computational tasks such as quantum money. We observe that replacing the pseudorandom function with a (2t)-wise independent function (either in our construction or in previous work), results in an explicit construction for quantum state t-designs for all t. In fact, we show that the circuit complexity (in terms of both circuit size and depth) of constructing t-designs is bounded by that of (2t)-wise independent functions. Explicitly, while in prior literature t-designs required linear depth (for t > 2), this observation shows that polylogarithmic depth suffices for all t. We note that our constructions yield pseudorandom states and state designs with only real-valued amplitudes, which was not previously known. Furthermore, generating these states require quantum circuit of restricted form: applying one layer of Hadamard gates, followed by a sequence of Toffoli gates. This structure may be useful for efficiency and simplicity of implementation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset