PSGAN: Pose-Robust Spatial-Aware GAN for Customizable Makeup Transfer

09/16/2019
by   Wentao Jiang, et al.
23

We propose a novel Pose-robust Spatial-aware GAN (PSGAN) for transferring the makeup style from a reference image to a source image. Previous GAN-based methods often fail in cases with variant poses and expressions. Also, they cannot adjust the shade of makeup or specify the part of transfer. To address these issues, the proposed PSGAN includes a Makeup Distillation Network to distill the makeup style of the reference image into two spatial-aware makeup matrices. Then an Attentive Makeup Morphing module is introduced to specify how a pixel in the source image is morphed from the reference image. The pixelwise correspondence is built upon both the relative position features and visual features. Based on the morphed makeup matrices, a De-makeup Re-makeup Network performs makeup transfer. By incorporating the above novelties, our PSGAN not only achieves state-of-the-art results on the existing datasets, but also is able to perform the customizable part-by-part, shade controllable and pose-robust makeup transfer.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset