PythonFOAM: In-situ data analyses with OpenFOAM and Python
In this article, we outline the development of a general-purpose Python-based data analysis tool for OpenFOAM 8. Our implementation relies on the construction of OpenFOAM applications that have bindings to data analysis libraries in Python. Double precision data in OpenFOAM is cast to a NumPy array using the NumPy C-API and Python modules may then be used for arbitrary data analysis and manipulation on flow-field information. This document highlights how the proposed framework may be used for an in-situ online singular value decomposition (SVD) implemented in Python and accessed from the OpenFOAM solver PimpleFOAM. Here, `in-situ' refers to a programming paradigm that allows for a concurrent computation of the data analysis on the same computational resources utilized for the partial differential equation solver. In addition, to demonstrate data-parallel analyses, we deploy a distributed SVD, which collects snapshot data across the ranks of a distributed simulation to compute the global left singular vectors. Crucially, both OpenFOAM and Python share the same message passing interface (MPI) communicator for this deployment which allows Python objects and functions to exchange NumPy arrays across ranks. Our experiments also demonstrate how customized data science libraries such as TensorFlow may be leveraged through these bindings. Subsequently, we provide scaling assessments of our framework and the selected algorithms on multiple nodes of Intel Broadwell and KNL architectures for canonical test cases such as the large eddy simulations of a backward facing step and a channel flow at friction Reynolds number of 395.
READ FULL TEXT