Q-MIND: Defeating Stealthy DoS Attacks in SDN with a Machine-learning based Defense Framework
Software Defined Networking (SDN) enables flexible and scalable network control and management. However, it also introduces new vulnerabilities that can be exploited by attackers. In particular, low-rate and slow or stealthy Denial-of-Service (DoS) attacks are recently attracting attention from researchers because of their detection challenges. In this paper, we propose a novel machine learning based defense framework named Q-MIND, to effectively detect and mitigate stealthy DoS attacks in SDN-based networks. We first analyze the adversary model of stealthy DoS attacks, the related vulnerabilities in SDN-based networks and the key characteristics of stealthy DoS attacks. Next, we describe and analyze an anomaly detection system that uses a Reinforcement Learning-based approach based on Q-Learning in order to maximize its detection performance. Finally, we outline the complete Q-MIND defense framework that incorporates the optimal policy derived from the Q-Learning agent to efficiently defeat stealthy DoS attacks in SDN-based networks. An extensive comparison of the Q-MIND framework and currently existing methods shows that significant improvements in attack detection and mitigation performance are obtained by Q-MIND.
READ FULL TEXT