Quantum speedups for stochastic optimization

08/03/2023
by   Aaron Sidford, et al.
0

We consider the problem of minimizing a continuous function given quantum access to a stochastic gradient oracle. We provide two new methods for the special case of minimizing a Lipschitz convex function. Each method obtains a dimension versus accuracy trade-off which is provably unachievable classically and we prove that one method is asymptotically optimal in low-dimensional settings. Additionally, we provide quantum algorithms for computing a critical point of a smooth non-convex function at rates not known to be achievable classically. To obtain these results we build upon the quantum multivariate mean estimation result of Cornelissen et al. 2022 and provide a general quantum-variance reduction technique of independent interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset