Query Reformulation using Query History for Passage Retrieval in Conversational Search

05/05/2020
by   Sheng-Chieh Lin, et al.
0

Passage retrieval in a conversational context is essential for many downstream applications; it is however extremely challenging due to limited data resources. To address this problem, we present an effective multi-stage pipeline for passage ranking in conversational search that integrates a widely-used IR system with a conversational query reformulation module. Along these lines, we propose two simple yet effective query reformulation approaches: historical query expansion (HQE) and neural transfer reformulation (NTR). Whereas HQE applies query expansion, a traditional IR query reformulation technique, NTR transfers human knowledge of conversational query understanding to a neural query reformulation model. The proposed HQE method was the top-performing submission of automatic systems in CAsT Track at TREC 2019. Building on this, our NTR approach improves an additional 18 best entry in terms of NDCG@3. We further analyze the distinct behaviors of the two approaches, and show that fusing their output reduces the performance gap (measured in NDCG@3) between the manually-rewritten and automatically-generated queries to 4 from 22 points when compared with the best CAsT submission.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro