Question Answering by Reasoning Across Documents with Graph Convolutional Networks

08/29/2018
by   Nicola De Cao, et al.
0

Most research in reading comprehension has focused on answering questions based on individual documents or even single paragraphs. We introduce a method which integrates and reasons relying on information spread within documents and across multiple documents. We frame it as an inference problem on a graph. Mentions of entities are nodes of this graph where edges encode relations between different mentions (e.g., within- and cross-document co-references). Graph convolutional networks (GCNs) are applied to these graphs and trained to perform multi-step reasoning. Our Entity-GCN method is scalable and compact, and it achieves state-of-the-art results on the WikiHop dataset (Welbl et al. 2017).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro