Queue-Aware Variable-Length Coding for Ultra Reliable Low Latency Communications with Random Arrival

03/14/2019
by   Xiaoyu Zhao, et al.
0

With the phenomenal growth of the Internet of Things (IoT), Ultra Reliable Low Latency Communications (URLLC) has potentially been the enabler to guarantee the stringent requirements on latency and reliability. However, how to achieve low latency and ultra-reliability with the random arrival remains open. In this paper, a queue-aware variable-length channel coding is presented over the single URLLC user link, in which the finite blocklength of channel coding is determined based on the random arrival. More particularly, a cross-layer approach is proposed for the URLLC user to establish the optimal tradeoff between the latency and power consumption. With a probabilistic coding framework presented, the cross-layer variable-length coding can be characterized based on a Markov chain. In this way, the optimal delay-power tradeoff is given by formulating an equivalent Linear Programming (LP). By solving this LP, the delay-optimal variable-length coding can be presented based on a threshold-structure on the queue length.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset