Quickshift++: Provably Good Initializations for Sample-Based Mean Shift

05/21/2018
by   Heinrich Jiang, et al.
0

We provide initial seedings to the Quick Shift clustering algorithm, which approximate the locally high-density regions of the data. Such seedings act as more stable and expressive cluster-cores than the singleton modes found by Quick Shift. We establish statistical consistency guarantees for this modification. We then show strong clustering performance on real datasets as well as promising applications to image segmentation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset