Rank properties and computational methods for orthogonal tensor decompositions

03/12/2021
by   Chao Zeng, et al.
0

The orthogonal decomposition factorizes a tensor into a sum of an orthogonal list of rankone tensors. We present several properties of orthogonal rank. We find that a subtensor may have a larger orthogonal rank than the whole tensor and prove the lower semicontinuity of orthogonal rank. The lower semicontinuity guarantees the existence of low orthogonal rank approximation. To fit the orthogonal decomposition, we propose an algorithm based on the augmented Lagrangian method and guarantee the orthogonality by a novel orthogonalization procedure. Numerical experiments show that the proposed method has a great advantage over the existing methods for strongly orthogonal decompositions in terms of the approximation error.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset