Rate-Distortion Theory for Mixed States

08/24/2022
by   Zahra Baghali Khanian, et al.
0

In this paper we consider the compression of asymptotically many i.i.d. copies of ensembles of mixed quantum states where the encoder has access to a side information system. This source is equivalently defined as a classical-quantum state, namely, a quantum system correlated with a classical system playing the role of an inaccessible reference system. The figure of merit is evaluated based on per-copy or local error criterion. Under this set-up, known as a rate-distortion set-up, one can study the trade-off between the compression rate and the error. The optimal trade-off can be characterized by the rate-distortion function, which is the best rate given a certain distortion. We find the rate-distortion functions in the entanglement-assisted and unassisted scenarios, in terms of a single-letter mutual information quantity and the regularized entanglement of purification, respectively. We also consider the general case when both communication and entanglement are charged, and present the full qubit-entanglement rate region. Our compression scheme covers both blind and visible compression models (and other models in between) depending on the structure of the side information system.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset