RCURRENCY: Live Digital Asset Trading Using a Recurrent Neural Network-based Forecasting System

06/13/2021
by   Yapeng Jasper Hu, et al.
0

Consistent alpha generation, i.e., maintaining an edge over the market, underpins the ability of asset traders to reliably generate profits. Technical indicators and trading strategies are commonly used tools to determine when to buy/hold/sell assets, yet these are limited by the fact that they operate on known values. Over the past decades, multiple studies have investigated the potential of artificial intelligence in stock trading in conventional markets, with some success. In this paper, we present RCURRENCY, an RNN-based trading engine to predict data in the highly volatile digital asset market which is able to successfully manage an asset portfolio in a live environment. By combining asset value prediction and conventional trading tools, RCURRENCY determines whether to buy, hold or sell digital currencies at a given point in time. Experimental results show that, given the data of an interval t, a prediction with an error of less than 0.5% of the data at the subsequent interval t+1 can be obtained. Evaluation of the system through backtesting shows that RCURRENCY can be used to successfully not only maintain a stable portfolio of digital assets in a simulated live environment using real historical trading data but even increase the portfolio value over time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset