Reaching Your Goal Optimally by Playing at Random

05/11/2020
by   Benjamin Monmege, et al.
0

Shortest-path games are two-player zero-sum games played on a graph equipped with integer weights. One player, that we call Min, wants to reach a target set of states while minimising the total weight, and the other one has an antagonistic objective. This combination of a qualitative reachability objective and a quantitative total-payoff objective is one of the simplest setting where Min needs memory (pseudo-polynomial in the weights) to play optimally. In this article, we aim at studying a tradeoff allowing Min to play at random, but using no memory. We show that Min can achieve the same optimal value in both cases. In particular, we compute a randomised memoryless ε-optimal strategy when it exists, where probabilities are parametrised by ε. We then characterise, and decide in polynomial time, the class of games admitting an optimal randomised memoryless strategy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset