Real Equation Systems with Alternating Fixed-points (full version with proofs)

07/14/2023
by   Jan Friso Groote, et al.
0

We introduce the notion of a Real Equation System (RES), which lifts Boolean Equation Systems (BESs) to the domain of extended real numbers. Our RESs allow arbitrary nesting of least and greatest fixed-point operators. We show that each RES can be rewritten into an equivalent RES in normal form. These normal forms provide the basis for a complete procedure to solve RESs. This employs the elimination of the fixed-point variable at the left side of an equation from its right-hand side, combined with a technique often referred to as Gauß-elimination. We illustrate how this framework can be used to verify quantitative modal formulas with alternating fixed-point operators interpreted over probabilistic labelled transition systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset